Try the Free Math Solver or Scroll down to Tutorials!

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

Please use this form if you would like
to have this math solver on your website,
free of charge.


Inequalities

Faculty Name: Sandra H. Jones
School: Weddington Math, Science,
and Technology Academy
Grade Level: 6th

Teaching objective(s):
Interpret and write inequalities

Instructional Activities:
Teacher Will:
1. Ask students is there ever a reason that we should have to use
inequalities. (Response: when we don’t know exactly what an expression is
equal to).

2. Ask students to give real-life examples of inequalities. (Response: amusement
park; alcohol and cigarette purchases; express check-out)

3. Display and discuss inequality signs.*Remind students that inequalities are
read from left to right.)

4. Display simple inequalities and have volunteers read:
Ex:
x< 4 –is less than
x> 4 – is greater than
x ≤ 4 – is less than or equal to
x ≥4 – is greater than or equal to

5. Remind students of the situations that were discussed earlier. Discuss which
word/words in the situations told them or gave them a clue for which
inequality to use.

6. List student given words on transparency. (Possible responses: at least, at
most, minimum speed, maximum speed)

7. Display inequality word problems, have student volunteers write the
inequality using numbers, variables and the inequality sign. (problem: A
number less five is greater that 7 Answer: x –5> 7)

8. Distribute and explain “Inequality Match-Up” to groups. Allowing students
about 5 minutes to complete activity. Observe and assist students as needed.

9. Summarize lesson by explaining that using riddles they can also solve
inequalities. Explain that the solution must satisfy all statements in the riddle.
Riddle#1 “I am thinking of a natural number that is greater than 7 but less
than 10. When I multiply this number by 9, the answer is a perfect square.
(Response: 7<x<10; x =9)

Riddle #2: “I am thinking of an integer that is greater than 2 but no bigger
than 9. If I add 3 ¾ to this integer, the result is a rational number that cannot
be smaller than 12 or more than 13. (Response: 2< x ≤ 9; 9+3 3/4=12 ¾;x =9 )

Materials and Resources

Overhead Projector
Transparency
“Inequality Match-Up” game

Assessment
1. Teacher observation: observe students and assist as they work in groups to
complete game
2. Check for accuracy of riddle.

Transparency #1:
1) A number less 5 is greater than 7.
x-5>7
2) A number greater than or equal to -2.
X ≥2
3) A number greater than -2, but less than or equal 4.
-2 < x ≤ 4

Transparency #2:

1) I am thinking of a natural number that is greater than 7 but
less than 10. When I multiply this number by 9, the answer is
a perfect square.
7< x <10 ( answer x=9) (9 x 9= 81; = 9)

2.) I am thinking of an integer that is greater than 2 but no bigger
than 9. If I add 3 ¾ to this integer, the result is a rational number
that cannot be smaller than 12 or more than 13.
2< x ≤ 9; (answer: x=9); (9 + 3 ¾ =12 ¾)

“Inequality Match-Up”
Directions: Each group will be given a set of 30 index cards:
fifteen (15) with inequalities and fifteen (15) with the inequalities
written in word format. After all cards have been shuffled and
turned face down, students will take turns flipping cards matching
the inequality with the word format. Student with the most matches
wins.

6 + m < 2 Six plus a number is < 2
5k ≥ 25 five times a number is greater than or equal
to twenty-five
9j ≤18 A number times nine is less than or equal to
eighteen
C – 2 ≤ 5 Two less than a number is less than or equal
to five
2a + 3 < 7 Three more than a number times two is less
than seven
7r + 5 > 19 Five more than seven times a number is
greater than nineteen
4b -2 > 10 Two less than a number times four is greater
than ten
8x – 3 ≥ 13 Three less than a number times eight is
greater than or equal to thirteen
3y – 11 > 1 Eleven less than three times a number is
greater than 1
3f > 15 Three times a number is greater than fifteen
m + 3 <6 Three more than a number is less than six
P – 8 ≤ Eight less than a number is less than or equal
to negative twelve
4b ≥ 16 A number times four is greater than or equal
to sixteen
S + 12< 11 Twelve more than a number is less than
eleven
T + 4 > Four more than a number is greater than
negative two